Escherichia coli K1 polysialic acid O-acetyltransferase gene, neuO, and the mechanism of capsule form variation involving a mobile contingency locus.
نویسندگان
چکیده
Potential O-acetylation of the sialic acid residues of Escherichia coli K1, groups W-135, Y, and C meningococci, and group B Streptococcus capsular polysaccharides modifies their immunogenicity and susceptibility to glycosidases. Despite the biological importance of O-acetylation, no sialic or polysialic acid O-acetyltransferase has been identified in any system. Here we show that the E. coli K1 O-acetyltransferase encoded by neuO is genetically linked to the endo-neuraminidase tail protein gene of a chromosomal accretion element, designated CUS-3, with homology to lambdoid bacteriophage. Molecular epidemiological analysis established concordance between O-acetyltransferase and CUS-3 in a set of E. coli K1 strains. Deleting neuO eliminated enzymatic activity, which was restored by complementation in trans, and confirmed by (13)C-NMR analysis of the acetylated product. Analysis of mutants that accumulate intracellular polysialic acid because of export defects (kpsM and kpsS) or an inability to synthesize the sialic acid precursor, N-acetylmannosamine (neuC), indicated that NeuO does not require constant association with its substrate for activity. DNA sequencing and PCR analysis of neuO from strains that had undergone random capsule form variation showed that slip strand DNA mispairing or unequal recombination resulted in gain or loss of (5'-AAGACTC-3')(n) heptanucleotide repeats (where n approximately equals 14-39) located in the neuO 5' region. These repeats code for a previously undescribed structure designated the poly(Psi) motif. The unexpected discovery of the neuO contingency locus (hypervariable gene controlling expression of a surface epitope) in E. coli, and of a potential phage for redistributing variant neuO alleles, provides a robust system for investigating the functions of localized hypermutability in pathogen evolution.
منابع مشابه
Biochemical characterization of the polysialic acid-specific O-acetyltransferase NeuO of Escherichia coli K1.
Escherichia coli K1 is a leading pathogen in neonatal sepsis and meningitis. The K1 capsule, composed of alpha2,8-linked polysialic acid, represents the major virulence factor. In some K1 strains, phase-variable O-acetylation of the capsular polysaccharide is observed, a modification that is catalyzed by the prophage-encoded O-acetyltransferase NeuO. Phase variation is mediated by changes in th...
متن کاملSeparate pathways for O acetylation of polymeric and monomeric sialic acids and identification of sialyl O-acetyl esterase in Escherichia coli K1.
O acetylation at carbon positions 7 or 9 of the sialic acid residues in the polysialic acid capsule of Escherichia coli K1 is catalyzed by a phase-variable contingency locus, neuO, carried by the K1-specific prophage, CUS-3. Here we describe a novel method for analyzing polymeric sialic acid O acetylation that involves the release of surface sialic acids by endo-N-acetylneuraminidase digestion,...
متن کاملCrystal Structure Analysis of the Polysialic Acid Specific O-Acetyltransferase NeuO
The major virulence factor of the neuroinvasive pathogen Escherichia coli K1 is the K1 capsule composed of α2,8-linked polysialic acid (polySia). K1 strains harboring the CUS-3 prophage modify their capsular polysaccharide by phase-variable O-acetylation, a step that is associated with increased virulence. Here we present the crystal structure of the prophage-encoded polysialate O-acetyltransfe...
متن کاملGene products required for de novo synthesis of polysialic acid in Escherichia coli K1.
Escherichia coli K1 is responsible for 80% of E. coli neonatal meningitis and is a common pathogen in urinary tract infections. Bacteria of this serotype are encapsulated with the alpha(2-8)-polysialic acid NeuNAc(alpha2-8), common to several bacterial pathogens. The gene cluster encoding the pathway for synthesis of this polymer is organized into three regions: (i) kpsSCUDEF, (ii) neuDBACES, a...
متن کاملThe pap operon of avian pathogenic Escherichia coli strain O1:K1 is located on a novel pathogenicity island.
We have identified a 56-kb pathogenicity island (PAI) in avian pathogenic Escherichia coli strain O1:K1 (APEC-O1). This PAI, termed PAI I(APEC-O1), is integrated adjacent to the 3' end of the pheV tRNA gene. It carries putative virulence genes of APEC (pap operon), other E. coli genes (tia and ireA), and a 1.5-kb region unique to APEC-O1. The kps gene cluster required for the biosynthesis of po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 15 شماره
صفحات -
تاریخ انتشار 2005